home › Forums › SWICCA Forum › Downscaling data/indicators to higher resolution for test cases. › Reply To: Downscaling data/indicators to higher resolution for test cases.
Hi
We use ECV (daily river flow 0.5 deg and catchments) to get seasonal flow duration curves in C.C: conditions
Particularly we apply delta change method to local observed flow duration curves (available for period 1991-2001) in order to correct percentiles in C.C. conditions by taking changes of percentiles in swicca modeled FDC and applying this changes to observed FDC.
We guess if we can exclude one or more hydrological models (E-HYpe, VIC 421, LISFLOOD), in order to reduce possible output combinations, making some assumptions on how good they are in describing most relevant mechanisms in discharge generation for the area of interest.
We guess that this is possible by examinating shape of flow duration curve: we proceeded this way
– we have local studies that give for this area two adimensional Flow Duration Curves (A_FDC, normalized by mean discharge over observed discharge time series) for catchments area above and below 100 km2.
– We compared this two representative curves with A_FDC from the three hydrological models in the reference period 1971-2001 for every hydrological model, and every input/forcing both for 0.5 deg data and catchment scale data (the latest only for E-HYPE21)
– we found quite different behavior of the three models and particularly found out a better fit between observed A_FDC and modeled A_FDC for E-Hype21 at catchment level.
a few graphs showing this are available in this link
GDOC_ FDC
The question is : can we assume from this comparison that hydrological model E-HYpe21 at catchment scale is more suitable for the area of interest and exclude other models, then apply delta change method in order to modify actual observed FDC to obtain Climate change FDC?
many thanks for the help
best
Paolo
- This reply was modified 7 years, 5 months ago by Paolo GECOS.